Left-invariant Parabolic Evolutions on Se(2) and Contour Enhancement via Invertible Orientation Scores Part Ii: Nonlinear Left-invariant Diffusions on Invertible Orientation Scores
نویسندگان
چکیده
By means of a special type of wavelet unitary transform we construct an orientation score from a grey-value image. This orientation score is a complex-valued function on the 2D Euclidean motion group SE(2) and gives us explicit information on the presence of local orientations in an image. As the transform between image and orientation score is unitary we can relate operators on images to operators on orientation scores in a robust manner. Here we consider nonlinear adaptive diffusion equations on these invertible orientation scores. These nonlinear diffusion equations lead to clear improvements of the celebrated standard “coherence enhancing diffusion” equations on images as they can enhance images with crossing contours. Here we employ differential geometry on SE(2) to align the diffusion with optimized local coordinate systems attached to an orientation score, allowing us to include local features such as adaptive curvature in our diffusions.
منابع مشابه
Left-invariant Parabolic Evolutions on Se(2) and Contour Enhancement via Invertible Orientation Scores Part I: Linear Left-invariant Diffusion Equations on Se(2)
We provide the explicit solutions of linear, left-invariant, diffusion equations and the corresponding resolvent equations on the 2D-Euclidean motion group SE(2) = R T. These parabolic equations are forward Kolmogorov equations for well-known stochastic processes for contour enhancement and contour completion. The solutions are given by group convolution with the corresponding Green’s functions...
متن کاملLeft-invariant Parabolic Evolutions on Se(2) and Contour Enhancement via Invertible Orientation Scores Part I: Linear Left-invariant Diffusion Equations
We provide the explicit solutions of linear, left-invariant, diffusion equations and the corresponding resolvent equations on the 2D-Euclidean motion group SE(2) = R T. These parabolic equations are forward Kolmogorov equations for well-known stochastic processes for contour enhancement and contour completion. The solutions are given by group convolution with the corresponding Green’s functions...
متن کاملLine Enhancement and Completion via Linear Left Invariant Scale Spaces on SE(2)
From an image we construct an invertible orientation score, which provides an overview of local orientations in an image. This orientation score is a function on the group SE(2) of both positions and orientations. It allows us to diffuse along multiple local line segments in an image. The transformation from image to orientation score amounts to convolutions with an oriented kernel rotated at m...
متن کاملNumerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging
Left-invariant PDE-evolutions on the roto-translation group SE(2) (and their resolvent equations) have been widely studied in the fields of cortical modeling and image analysis. They include hypo-elliptic diffusion (for contour enhancement) proposed by Citti & Sarti, and Petitot, and they include the direction process (for contour completion) proposed by Mumford. This paper presents a thorough ...
متن کاملNonlinear Diffusion on the 2D Euclidean Motion Group
Linear and nonlinear diffusion equations are usually considered on an image, which is in fact a function on the translation group. In this paper we study diffusion on orientation scores, i.e. on functions on the Euclidean motion group SE(2). An orientation score is obtained from an image by a linear invertible transformation. The goal is to enhance elongated structures by applying nonlinear lef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008